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1 Introduction

This document describes the steps needed to implement a simple body force propeller model in OpenFOAM. Body
forces are a way to represent objects interfering with a fluid without discretizing said object. Consider a body
moving in a fluid. This body will disturb the surrounding fluid by transferring some of its momentum through
viscous and normal stresses. This can be approximated by introducing a forcing term Fv in the Navier-Stokes
momentum equation as shown in Eq. (1). A body force model of the moving object is a formulation for the
distribution of Fv in the fluid; such that the generated momentum is accurately represented.
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In this case, let’s consider the momentum introduced by a rotating propeller. Approximating this using a body
force model presents a major advantage in ship performance calculations. Discretizing a complex rotating geometry
behind an already complex geometry (ship’s hull + appendages) is both challenging and computationally intensive.

There are many approaches to describing a propeller using a distribution of Fv. For example, the open source
self propulsion framework SHORTCUt has several formulations implemented, based on Blade Element Momentum
theory and Lifting Line/Surface theory. See Windén (2021a,b) for more information. In this report, a very simple
model will be created to demonstrate the principle of how to modify OpenFOAM solvers for this kind of purpose.
These are the goals that will be addressed in the following sections:

• The model should be able to read basic propeller geometry from a dictionary during run-time

• The momentum source strength should be based on the generated thrust and torque from the propeller. As
a simple example, the thrust and torque will be obtained from a curve-fit to experimental data for a given
propeller advance ratio

• The advance ratio should be obtained by probing the propeller inflow velocity

2 Preparaion

First, let’s create a directory where you will keep the source code of the new solver.

mkdir my_applications

cd my_applications
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Now, let’s get a copy of simleFoam and call it my simpleFoam. Note the path to the root installation of
OpenFOAM; if yours is different then adjust accordingly.

cp -r /opt/OpenFOAM/OpenFOAM -7/ applications/solvers/incompressible/simpleFoam/

↪→ .

mv simpleFoam my_simpleFoam

cd my_simpleFoam

mv simpleFoam.C my_simpleFoam.C

Remove derivative solvers we don’t need.

rm -r porousSimpleFoam

rm -r SRFSimpleFoam

Finally, before we start modifying the source code, let’s modify the make files. We need to change the name
and location of the target executable to avoid overwriting anything.

sed -i "s/simpleFoam/my_simpleFoam/g" Make/files

sed -i "s/FOAM_APPBIN/FOAM_USER_APPBIN/" Make/files

3 Creating a body force field variable

Next, we need to have the solver create/read the body force field. In createFields.H, add the following just under
the intitialization of U .

Info << "Reading field volumeForce\n" << endl;

volVectorField volumeForce //C++ name "volumeForce"

(

IOobject

(

"volumeForce", // Written file name "volumeForce"

runTime.timeName (), // Written in the time folder (e.g. 0,1,2,3...)

mesh , // Stored in the mesh database

IOobject ::MUST_READ , //Must be read if the file exists (e.g. when

↪→ restarting a simulation from a time other than 0)

IOobject :: AUTO_WRITE // Automatically write at all time steps where

↪→ writing is requested by controlDict

),

mesh

);

The boundary conditions of the volumeForce field are defined by adding a file called volumeForce in the 0-
directory in any case that is to use the my simpleFoam solver. The volumeForce file should contain the following:

/*--------------------------------*- C++ -*----------------------------------*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https :// openfoam.org

\\ / A nd | Version: 7

\\/ M anipulation |

\*---------------------------------------------------------------------------*/

FoamFile
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{

version 2.0;

format ascii;

class volVectorField;

object volumeForce;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 1 -2 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

".*"

{

type zeroGradient;

}

}

which sets the boundary condition of Fv to zeroGradient for all boundaries.

4 Adding the body force in the solver

my simpleFoam.C is the source code for the solver. We need to add an expression for the volume force here. Add
the following above #include "Ueqn.H"

#include "forceEqn.H"

Also in my simpleFoam.C, add the following below #include "initContinuityErrs.H"

#include "initProp.H"

Finally, we need to add the body force field to the Navier Stokes momentum equation. In Ueqn.H, Add the
volume force to the right hand side of the equation, modifying the definition of tmp<fvVectorMatrix> tUEqn as:

tmp <fvVectorMatrix > tUEqn

(

fvm::div(phi , U)

+ MRF.DDt(U)

+ turbulence ->divDevReff(U)

==

fvOptions(U)

+ volumeForce

);

5 Initializing the propeller model from a dictionary

In Section 4, initProp.H was added to the simpleFoam source code to initialize the propeller model. Here, we
define how the solver should read propeller properties from a dictionary. Let’s define a new dictionary, it should
be called propellerDict and be placed in the system-folder of a case where you would like to use my simpleFoam.
In this example, the propeller thrust and torque will be obtained by curve fit to an experimental open water curve.
The dictionary therefore contains 5th order polynomial coefficients that describes the relationship between advance
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ratio and thrust/torque for a MARIN 7967 propeller. The dictionary can be modified with different coefficients to
fit any other available open water curves.

propellerDict should contain the following information:

/*--------------------------------*- C++ -*----------------------------------*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https :// openfoam.org

\\ / A nd | Version: 7

\\/ M anipulation |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object propellerDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

propOrigin (6 0 0);

propOrientation (1 0 0);

propVertDir (0 0 1);

radius 1;

hubRadius 0.2;

thickness 0.2;

n 20;

frontUd 4;

//J vs KT,KQ polynomial coefficients for MARIN 7967 propeller a0+a1*J+a2*J^2+a3

↪→ *J^3+a4*J^4+a5*J^5

KTfifthOrderPolyCoeffs (0.398399 -0.067794 -1.286040 2.286960 -2.039820

↪→ 0.676134);

KQfifthOrderPolyCoeffs (0.051144 -0.000390 -0.171650 0.330060 -0.327865

↪→ 0.119477);

Now we need to set up the solver to read this dictionary. Create a new file called initProp.H in the same
directory as my simpleFoam.C and initialize the propeller model as follows:

//Read the propeller dictionary from the system folder

IOdictionary propDict

(

IOobject

(

"propellerDict",

runTime.system (),

runTime ,

IOobject ::MUST_READ ,

IOobject ::NO_WRITE ,

false

)

);
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//Read properties from the dictionary

vector propOrigin , propOrient , propVertDir;

propDict.lookup("propOrigin") >> propOrigin;

propDict.lookup("propOrientation") >> propOrient;

propDict.lookup("propVertDir") >> propVertDir;

scalar propRad , hubRad , thickness , n, frontUd;

propDict.lookup("radius") >> propRad;

propDict.lookup("hubRadius") >> hubRad;

propDict.lookup("thickness") >> thickness;

propDict.lookup("n") >> n;

propDict.lookup("frontUd") >> frontUd;

//J vs KT,KQ polynomial fit for propeller KT=a0+a1*J+a2*J^2+a3*J^3+a4*J^4+a5*J

↪→ ^5

List <scalar > fithOrderCoeffsKT , fithOrderCoeffsKQ;

fithOrderCoeffsKT.setSize (6);

fithOrderCoeffsKQ.setSize (6);

propDict.lookup("KTfifthOrderPolyCoeffs") >> fithOrderCoeffsKT;

propDict.lookup("KQfifthOrderPolyCoeffs") >> fithOrderCoeffsKQ;

//Pre -declare some variables

vector tanDir , projPplane , cellC , projPaxis;

scalar currRad , Thrust , Torque , axF , tanF , totvFA , totvFT , cellV , radiusScaled ,

↪→ volinside (0), U0 , J, KT , KQ;

DynamicList <label > cellsinside;

DynamicList <vector > cellradii;

int ninside;

label probeCell (-1);

//Make axial vector unit length

propOrient = propOrient/mag(propOrient);

6 Defining the body force strength

Let [U ]xpp
be the total velocity (u, v, w) at a probe location xpp, a distance dp upstream of the propeller origin xp0

at a radius of 0.5r0. Also, let the propeller orientation be defined by the propeller disk normal vector P̄ and the
propeller vertical direction be defined by the vector P̄v. Then

(2)xpp = xp0 − dpP̄ + 0.5r0P̄v

and the propeller inflow velocity U0 can be calculated as

(3)U0 = [U ]xpp
· P

From this, an approximate propeller advance ratio J can be calculated as

(4)J =
U0

n2r0
;

where n is the propeller rotation rate and r0 is the propeller radius. Using a 5th order polynomial fit to
experimental open water curves, the coefficient of thrust KT and torque KQ can be calculated from this advance
ratio as

(5)KT = a0 + a1J + a2J
2 + a3J

3 + a4J
4
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(6)KQ = b0 + b1J + b2J
2 + b3J

3 + b4J
4

Here, the propeller origin xp0, the propeller orientation P̄ , the distance to the probe point dp, the propeller
radius r0, the rotation rate n as well as the 5th order coefficients a0−4 and b0−4 are all read from the propeller
dictionary at run-time (as shown in the source code for initProp.H ) and do not need to be hard-coded into the
solver.

From Eq. (5) and Eq. (6), the total thrust T and torque Q of the propeller are given as

(7)T = KTn
2 (2r0)

4

(8)Q = KQn
2 (2r0)

5

This methodology yields an approximation of the total forcing to apply. It does not however, model the
distribution of the force on the propeller disk. To do this, and thereby obtaining the distribution of Fv on the
Finite Volume mesh, a Goldstein (1929) optimal distribution can be used. A non-dimensional radius rs is defined
as

(9)rs =
|RI | − rH
r0 − rH

where rH is the propeller hub radius and RI is a vector from the propeller origin to the cell center of cell I,
projected onto the propeller plane. Two shape functions, fK and fQ, describe the distribution of thrust and torque
respectively along the blade radius. These are defined, based on rs, as:

(10)fK = rs
√

1− rs

(11)fQ =
rs
√

1− rs
rs (1− rH) + rH

The distribution of Fv on the Finite Volume mesh can be obtained by applying the shape functions fK and fQ
to each cell of the mesh, with Fv = 0 being applied outside of the propeller radius and inside the hub radius. The
shape functions are based on the cell center location from Eq. (9).

Finally, to ensure consistensy with the calculated thrust and torque from Eq. (7) and Eq. (8), the distribution
of Fv is first normalized by the sum of the forces over all cells inside the propeller disk as:

(12)FK =
∑
cellI

fKVI

(13)FQ =
∑
cellI

fQVIrI

where VI is the volume of cell I. Finally, the strength of Fv in cell I, denoted FvI , is calculated by multiplying
the normalized force distribution by the thrust, torque and the appropriate directional vectors.

(14)FvI =
P̄ TfK
FK

+

(
P̄ ×RI

)
QfQ

FQ

This approach is very crude since only one velocity is probed and no consideration is given to the blade geometry
(Goldstein optimum used instead.) This means that the method is unable to detect variations in both the wake
and propeller geometry and therefore, is not suitable for studying propeller-hull interaction. It is provided here
only as a simple example of how a method like this can be implemented. The normalization done in Eq. (14) is
consistent with what would be done for more advanced models where fK , fQ, T and Q are calculated from the
propeller geometry rather than a fixed distribution.

In Section 4, forceEqn.H was added to the simpleFoam source code to calculate the distribution of Fv. Create
a new file called forceEqn.H in the same directory as my simpleFoam.C and calculate the body force as follows:
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//If the probe cell wasn’t searched for yet , find it. This if -statement means

//the mesh only has to be searched once.

if (probeCell == -1)

{

probeCell = mesh.findCell(propOrigin+propVertDir *0.5* propRad -frontUd*

↪→ propOrient);

}

// Inflow velocity normal to the propeller

U0=U[probeCell] & propOrient;

// Advance coefficient

J = U0/(n*2* propRad);

//KT and KQ from polynomial fit

KT = fithOrderCoeffsKT [0]+ fithOrderCoeffsKT [1]*J + fithOrderCoeffsKT [2]* sqr(J)

↪→ + fithOrderCoeffsKT [3]*J*sqr(J) +fithOrderCoeffsKT [4]* sqr(J)*sqr(J) +

↪→ fithOrderCoeffsKT [5]*J*sqr(J)*sqr(J);

KQ = fithOrderCoeffsKQ [0]+ fithOrderCoeffsKQ [1]*J + fithOrderCoeffsKQ [2]* sqr(J)

↪→ + fithOrderCoeffsKQ [3]*J*sqr(J) +fithOrderCoeffsKQ [4]* sqr(J)*sqr(J) +

↪→ fithOrderCoeffsKQ [5]*J*sqr(J)*sqr(J);

// Calculate thrust and torque

Thrust = KT*sqr(n)*sqr(sqr (2* propRad));

Torque = KQ*sqr(n)*2* propRad*sqr(sqr (2* propRad));

totvFA =0;

totvFT =0;

ninside =0;

volinside =0;

//Loop through cell centres

forAll (mesh.C(), celli)

{

cellC = mesh.C()[celli]; // Coordinate of current cell centre

// Pojection of vector from prop centre to cell centre on propeller axis

↪→ ;

projPaxis = propOrient *( propOrient & (cellC -propOrigin));

//If this cell centre is within the thickness of the propeller disk ,

↪→ proceed.

if(mag(projPaxis)<=thickness /2)

{

// Pojection of vector from prop centre to cell centre on

↪→ propeller plane;

projPplane [0]=( cellC [0]- propOrigin [0])*(sqr(propOrient [1])+sqr(

↪→ propOrient [2]))

-(cellC [1]- propOrigin [1])*propOrient [0]* propOrient [1]

-(cellC [2]- propOrigin [2])*propOrient [0]* propOrient [2];

projPplane [1]=-( cellC [0]- propOrigin [0])*propOrient [0]*

↪→ propOrient [1]

+(cellC [1]- propOrigin [1])*(sqr(propOrient [0])+sqr(

↪→ propOrient [2]))
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-(cellC[2]- propOrigin [2])*propOrient [1]* propOrient [2];

projPplane [2]=-( cellC [0]- propOrigin [0])*propOrient [0]*

↪→ propOrient [2]

-(cellC[1]- propOrigin [1])*propOrient [1]* propOrient [2]

+(cellC [2]- propOrigin [2])*(sqr(propOrient [0])+sqr(

↪→ propOrient [1]));

// Radius of current cell centre to propeller origin

currRad = mag(projPplane);

//IF this cell centre is within the radius of the propeller

↪→ disk , proceed.

if(currRad <= propRad && currRad >= hubRad)

{

//Mark cells inside disk and add their volume to total

↪→ volume calculation

cellsinside.append(celli);

cellradii.append(projPplane);

cellV = mesh.V()[celli ]; // Volume of current

↪→ cell centre

volinside += cellV; // Total volume

//Non -dimensional radius (0 at hub , 1 at tip)

radiusScaled = (currRad/propRad -hubRad/propRad)/(1.0-

↪→ hubRad /propRad);

// Calculate total force of the normalised distribution

↪→ in order to correct for KT and KQ later

totvFA += radiusScaled*Foam::sqrt (1.0- radiusScaled)*

↪→ cellV;

totvFT += radiusScaled*Foam::sqrt(1- radiusScaled)/(

↪→ radiusScaled *(1- hubRad)+hubRad)*cellV*currRad;

//Step up counter

ninside ++;

}

else

{

volumeForce[celli ]= vector ::zero;

}

}

else

{

volumeForce[celli ]= vector ::zero;

}

}

//If propeller cells are in different processors , make sure the sums are added.

reduce(ninside ,maxOp <scalar >());

reduce(volinside ,maxOp <scalar >());

// Distribute volume force over cells inside disk to achieve set thrust and

↪→ torque

forAll(cellsinside ,cellIi)
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{

currRad = mag(cellradii[cellIi ]);

//Non dimensional radius

radiusScaled = (currRad/propRad -hubRad/propRad)/(1.0- hubRad /propRad);

// Axial force distribution

axF=radiusScaled*Foam::sqrt (1.0- radiusScaled);

// Tangential force distribution

tanF = radiusScaled*Foam::sqrt(1- radiusScaled)/( radiusScaled *(1- hubRad)

↪→ +hubRad);

// Tangential direction (orthogonal to radial direction)

vector tanDir = propOrient ^ cellradii[cellIi ];

//Make tangential vector unit length

tanDir = tanDir/mag(tanDir);

//Finally , calculate the volume force distribution and make sure the

↪→ Thrust and Torque are matched

volumeForce[cellsinside[cellIi ]] = propOrient*Thrust*axF/( totvFA +

↪→ VSMALL) + tanDir*Torque*tanF/( totvFT+VSMALL);

}

Info <<"Found "<<ninside <<" cells in propeller disk"<<endl;

Info <<"Cell volume / disk volume = " <<100* volinside /( constant :: mathematical ::pi

↪→ *thickness *(sqr(propRad)-sqr(hubRad)))<<" %"<<endl;

Info <<"U0 : "<<U0<<" , J : "<<J<<endl;

Info <<"KT : "<<KT<<" , KQ : "<<KQ <<endl;

7 Compiling the new solver

After following the steps in the previous sections, to compile the solver run the following command in the
my simpleFoam-directory

wmake

After successful compilation, my simpleFoam is now available as a solver to use in any OpenFOAM case. Bear in
mind that the case must contain the propellerDict dictionary, in the form shown in Section 5 and the Fv boundary
conditions, in the form shown in Section 3 for the solver to work.

8 Testing

This section shows a very simple usage example for the my simpleFoam solver that was created in the previous
sections. The propeller is modeled inside a cylindrical domain with a uniform inflow speed of U∞ = 20m/s. A
shaft extends from the inlet to the propeller position to mimic the setup of a cavitation tunnel. The dimensions
of the domain are shown in Fig. 1. The propeller radius is r0 = 1m and the rotation rate is n = 20/s giving an
advance ratio of J = 0.5. The OpenFOAM case used here is attached to this document.
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Figure 1: Computational domain: a circular cylinder with a shaft protruding downstream from the inlet. The
area where the body force is active (the location of the propeller) is highlighted but is purely virtual. No physical
propeller or discretization thereof exist.

This example serves only to illustrate that the solver serves its purpose of accelerating the flow and does not
go into detail regarding the flow-field accuracy with regards to the target propeller. For more advanced propeller
models, such an analysis would be necessary to determine their fitness for purpose. Because the inflow velocity in
this solver is probed at a single point upstream, it is unsuitable for studying propeller/hull interaction. It would
however be possible to use it for limited propeller/rudder interaction studies by placing a rudder downstream.

The pressure distribution on the tunnel center plane is shown in Fig. 2. The pressure jump stemming from the
propeller blades can clearly be seen. Note that the pressure jump is not explicitly modeled or enforced but is a
result of the pressure-velocity coupling and the applied momentum source (Fv, see Eq. (1)). Three-dimensional
streamlines are also shown to illustrate how the flow is rotated at the propeller plane.

The axial velocity on the tunnel center plane is shown in Fig. 3, with a detailed view near the propeller in
Fig. 4. Three-dimensional streamlines are shown in these figures to illustrate how the flow is rotated.
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Figure 2: Pressure coefficient Cp on the center plane of the tunnel. Streamlines (in 3D) passing through the
propeller disk are show in order to illustrate how the flow is rotated.

Figure 3: Relative axial velocity Ux/U∞ on the center plane of the tunnel. Streamlines (in 3D) passing through
the propeller disk are show in order to illustrate how the flow is rotated.
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Figure 4: Detail (near the propeller) of relative axial velocity Ux/U∞ on the center plane of the tunnel. Streamlines
(in 3D) passing through the propeller disk are show in order to illustrate how the flow is rotated.
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