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1 Introduction and problem statement

In this article a brief introduction is given on how to implement a Numerical Wave Tank (NWT) in OpenFOAM to
simulate regular water waves. NWTs are used to simulate regular and irregular waves to study water free surface
dynamics, sediment transport, fluid-structure interaction due to wave loads and more.

In this case, a regular linear airy wave is simulated in the created NWT. The NWT’s dimension are (L = 10,
W = 1.2 and H=0.6) m. The simulated wave height is 2 cm and the wave length is 3 m.

2 Software installation

For ease of use, this numerical simulation is implemented via the blueCFD software (a Windows version of
OpenFOAM). This software can be downloaded and installed as an executable file from http://bluecfd.github.

io/Core/Downloads/. After installation is completed, the user can use the blueCFD core terminal to execute
OpenFOAM commands.

3 interfoam solver

OpenFOAM is a Finite Volume based open source code that includes several solvers dedicated to solve various fluid
flow problems. The choice between these solvers depends on the user application of interest.

For this NWT application we will use the interFOAM solver (Damian (2012)) that is able to solve for multiphase
flows using the Volume Of Fluid technique for fluid-fluid interface capturing. The solver is incompressible and
isothermal. interFoam solves for the coupled PDE’s, continuity equation 1, Navier-Stoke’s equations 2 and the
phase fraction equation 4). Where u is the flow velocity.p and ρ are the thermodynamic pressure and mixture
density (5). T is the viscous stress tensor that is a function of the effective dynamic viscosity and the general rate
of strain tensor D . fb represents body forces, including the gravitational force and the surface tension. The solver
uses the PIMPLE algorithm for velocity-pressure coupling (Holzmann (2016)).

(1)∇ · u = 0

(2)
∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ ·T + ρfb

(3)T = 2µD

(4)
∂α

∂t
+∇ · αu = 0

(5)ρ = αρw + (1− α)ρa
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4 OpenFOAM case folder structure

OpenFOAM simulation cases should have a certain folder/file structure.
Figure 1 shows the folder/file structure for the NWT case. folder (0) contains the files that represents the

boundary and initial conditions for the velocity field, pressure field and the phase fraction field. Folder (system)
contains the files that control the numerical schemes such as fvSchemes and fvSolution. It also includes the
controlDict file where the user can indicate the solver of interest such as (interFoam) and the simulation time in
addition to other control parameters. The system folder includes the blockMeshDict file that is used to generate
the numerical grid for the simulation case.

The constant folder includes additional information for the solver, not related to boundary condition or numer-
ical schemes. The files in the constant folder can include a g file that determines the direction of the gravitational
force, (transportProperties) includes the material properties such as viscosity and density of the fluid and file
waveProperties contains the simulated wave properties such as wave amplitude and wave length. Figure 2 shows
the the blueCFD terminal on the root folder location and the sub folders/files. (The blueCFD terminal can
be opened on the root folder location by right-clicking on the root folder and choose ”Open with blueCFD core
terminal”).Note: The folder structure for the example presented in this article is attached as NWT.zip.

Figure 1: Folder structure for an interFoam solver case
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Figure 2: blueCFD terminal showing the main folders and files in the root folder
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5 Mesh creation

To generate a simple computational domain for the NWT with cuboid shape, the blockMesh utility is used.
With blockMesh, the user can assign Cartesian coordinates for all 8 vertices in the cuboid shape as well as
defining certain boundary names and types for faces constructed from these vertices. The numbering system for
the blockMesh utility is shown in figure 3.

Figure 3: blockMesh cuboid vertex numbering, This image is adopted form (Greenshields (2018))

Code 1 shows the blockMesh utility dictionary file structure. First, the min/max dimension variables for the
NWT are listed, then the vertices Cartesian coordinates (x1, x2, x3) are defined based on the numbering system
in figure 3. Then the cuboid shape is constructed by the hex object with the numbered vertices followed by
the number of elements in (x1, x2, x3) directions, here we used 45,15 and 45 elements in x1,x2 and x3 directions
respectively.

The boundary object defines the name, type and location of each boundary on the computational domain
outer surface. In this case we define five boundaries for the NWT (Inlet, Outlet, sides, bottom and top). Each
boundary is constructed by four vertices as shown in in figure 3.

Typing blockMesh in the blueCFD terminal makes OpenFOAM generate the computational domain (the
higher number of elements the longer time it takes to construct the grid).

Now, the user is ready to type paraFoam in the terminal to show the grid in the ParaView post processing
software as shown in figure 4
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Code 1: blockMeshDict to generate a simple grid for a cuboid domain

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https:// openfoam.org

\\ / A nd | Version: 8

\\/ M anipulation |

\*--------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * *

convertToMeters 1;

// Tank dimensions

X_MIN 0 ;

X_MAX 10 ;

Y_MIN -.6 ;

Y_MAX .6 ;

Z_MIN -0.3 ;

Z_MAX .3 ;

// Vertices locations for the Tank

vertices

(

($X_MIN $Y_MIN $Z_MIN)

($X_MAX $Y_MIN $Z_MIN)

($X_MAX $Y_MAX $Z_MIN)

($X_MIN $Y_MAX $Z_MIN)

($X_MIN $Y_MIN $Z_MAX)

($X_MAX $Y_MIN $Z_MAX)

($X_MAX $Y_MAX $Z_MAX)

($X_MIN $Y_MAX $Z_MAX)

);

// Build the block Mesh based on the indices numbering

blocks

(hex (0 1 2 3 4 5 6 7) (45 15 45) simpleGrading (1 1 1));

edges

(

);

defaultPatch

{

name frontAndBack;

type empty;}

// Give a name for each side

boundary

(

inlet

{ type patch;

faces

((0 4 7 3) );}

outlet

{

type wall;
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faces

((2 6 5 1));}

bottom

{

type wall;

faces

((1 2 3 0)); }

top

{

type patch;

faces

( (7 4 5 6));}

sides

{

type wall;

faces

((4 5 1 0)

(7 3 2 6));} );

mergePatchPairs ();

// ***********************************

Figure 4: Grid generated by the blockMesh utility
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6 Boundary and initial conditions

In this section we define the initial and boundary conditions IC/BC for the interFoam solver when solving the set
of equations (1, 2 and 4). The IC/BC are defined for the velocity field u in the U file, pressure field p in the p rgh
file and the phase fraction field α in the alpha.water file.

In addition, we need to define two more files , waveProperties where the incident wave parameters are defined
and setFields where the IC for the water/air phase fraction α are defined. This will essentially fill the tank with
water and define the mean water level.

The velocity BCs are shown in code 2. For the Inlet boundary, the type is wave velocity which will be defined
in code 5. noSlip BC is applied to the tank side, bottom and outlet walls.

A pressureInletOutletVelocity BC is applied to the top wall, this BC is usually used for boundaries that are
open to the atmosphere and where inflow or outflow may take place. When inflow occurs the velocity is calculated
by interpolating the neighbouring cells, for outflow, the pressure gradient is set to zero at that boundary.

The attached test case folder contains the BC called 0.org, it is customary to keep the original folder untouched
and to make a copy of it calling it 0 where the phase fraction BC is set.

More information about the different OpenFOAM boundary conditions can be found in (Greenshields (2018))

Code 2: U. Velocity boundary condition

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https:// openfoam.org

\\ / A nd | Version: 8

\\/ M anipulation |

\*-----------------------------------------

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

location "0";

object U;

}

// * * * * * * * * * * * * * * * * * * * * * * * *

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

#includeEtc "caseDicts/setConstraintTypes"

inlet

{type waveVelocity ;}

outlet

{type noSlip ;}

top

{type pressureInletOutletVelocity;

value uniform (0 0 0); }

bottom

{type noSlip ;}

sides

{type noSlip; }}

// **************************************************** //

Code 3 shows the pressure field BC, for all boundaries zero gradient is enforced except for the top boundary
where a total pressure BC is applied that represents atmospheric datum pressure.

Code 3: p rgh. Pressure boundary condition

========= |
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\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https:// openfoam.org

\\ / A nd | Version: 8

\\/ M anipulation |

\*------------------------------------------

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object p_rgh ;}

// * * * * * * * * * * * * * * * * * *

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

#includeEtc "caseDicts/setConstraintTypes"

"(inlet|outlet|bottom|sides)"

{

type fixedFluxPressure;

value uniform 0;}

top

{

type totalPressure;

p0 uniform 0;}}

// ***************//

Code 4 shows the alpha.water BC file for the phase fraction α. For the outlet, sides and bottom boundaries a
zeroGradient BC is used. For the inlet boundary, waveAlpha BC is used that is linked to the waveProperties
file discussed later in code 5. inletOutlet BC is applied for the top boundary, this is a mixed boundary condition
which applies zeroGradient for outflow condition and user specified value for inflow condition.

Code 4: alpha.water. Phase fraction boundary condition

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https:// openfoam.org

\\ / A nd | Version: 8

\\/ M anipulation |

\*--------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object alpha.water;

}

// * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

#includeEtc "caseDicts/setConstraintTypes"

"(outlet|bottom|sides)"

{
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type zeroGradient ;}

inlet

{

type waveAlpha;

U U;

inletOutlet true;}

top

{

type inletOutlet;

inletValue uniform 0;

value uniform 0; }}

// ***************************************** //

In code 5 the wave properties are defined by the wave amplitude, length and the water current speed UMean.
In addition, the user can define the wave direction (angle). The wave origin and direction are specified with respect
to the computational domain coordinate system generated by the blockMesh utility. Here we are simulating an
(Airy) wave that obeys linear wave theory. Other higher order nonlinear wave models are also included in the
OpenFOAM wave library such as Stoke’s waves.

At the end of the waveProperties file, scale object is defined to linearly damp the generated waves in the
range 7-9 m of the tank length in the wave propagation direction.
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Code 5: waveProperties. Wave properties definition

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https:// openfoam.org

\\ / A nd | Version: 8

\\/ M anipulation |

\*-----------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object waveProperties;

}

// * * * * * * * * * * * * * * * * * * * * * //

origin (0 0 0);

direction (1 0 0);

waves

(

Airy

// Stokes2

{

length 3;

amplitude 0.01;

phase 0;

angle 0; });

UMean (0 0 0); // current speed

scale table ((7 1) (9 0));

crossScale constant 1;

// ************************************* //

Code 6 shows the IC for the phase fraction α in the computational domain. First, the whole domain α has
value of zero that represents air. Then using the boxToCell object, all cells in the in the box dimension of interest
can be assigned new value of α = 1 that represent water. The zmax value in the box object is set to zero which
puts the undisturbed mean water free surface level at zero on the z axis.

The user can run the setFields command in the blueCFD terminal by typing setFields. To view the α field
run paraFoam in blueCFD terminal to open ParaView as shown in figure 5.

Code 6: setFileds. Defining the initial mean water level in the NWT

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https:// openfoam.org

\\ / A nd | Version: 8

\\/ M anipulation |

\*-----------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object setFieldsDict;

}

// * * * * * * * * * * * * * * * * * * //

defaultFieldValues
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( volScalarFieldValue alpha.water 0

);

regions

(

// Set cell values

// (does zerogradient on boundaries)

boxToCell

{ box (-999 -999 -999) (999 999 0);

fieldValues

(

volScalarFieldValue alpha.water 1

);});

// ******************************* //

Figure 5: Undisturbed phase fraction α. α=1 is water, α = 0 is air
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7 OpenFOAM simulation control

The user can control the major parameters of the case using the controlDict. These parameters include solver
type (interFoam), simulation endtime, data saving and writing intervals and the maximum allowable Courant
number for simulation stability control. Also in controlDict, the user can call the libraries used in the simulation
such as the wave generation library libwaves.so. In addition, other post post processing and, output controls
and data logging at certain locations or surfaces can be achieved. In this example we used the interfaceHeight
function to monitor the water free surface elevation at certain location in the NWT.

Other simulation control files are placed in the system folder such as fvSchemes and fvSoluiton, these two
files can control the numerical schemes such as the spatio-temporal numerical differentiation in the interFoam
solver or the parameters of the velocity-pressure coupling algorithm.

To start the interFoam solver, run interFoam command in the blueCFD terminal. The user will notice new
folders are being created in the root folder while the simulation is running. These have names corresponding to
the time stamps being written. A postProcessing folder is also generated which includes the interfaceHeight
output containing the wave elevation at the wave probe point.

Code 7: ControlDict.

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration | Website: https:// openfoam.org

\\ / A nd | Version: 8

\\/ M anipulation |

\*----------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// * * * * * * * * * ** * * * * * * * * * * * * * * //

application interFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 80;

deltaT 0.01;

writeControl adjustableRunTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 1.5;

maxAlphaCo 1.5;

maxDeltaT 0.1;

libs

( "libwaves.so");

functions

{
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interfaceHeight1

{ type interfaceHeight;

libs ("libfieldFunctionObjects.so");

locations (( 5 0 -1) );

alpha alpha.water;

}}

// ********************************************** //
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8 Results and post processing

After the solver finishes, the user can view the results in ParView by typing paraFoam in the blueCFD terminal.
Figure 6 shows the pressure contour for the water free surface at isosurface α = 0.5.

Figure 7 shows the free surface elevation at the virtual wave probe point (The output of the interfaceHeight
function defined in the controlDict).

Figure 6: Pressure contour at the water free surface
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Figure 7: Free surface water elevation at the virtual wave probe point
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9 Allrun/Allclean scripts

The user can automate the case running process by running the Allrun script in the blueCFD terminal as shown in
code 8. The Allrun script first makes a copied directory for the initial condition 0 folder, then runs (blockMesh,
setFields,interFoam) in order. To run the Allrun script, simply type ./Allrun in the blueCFD terminal. To
delete all results and data logging of the simulation in an efficient and easy way, the user can run the Allclean
script shown in code 9.

Code 8: Allrun script

. $WM_PROJECT_DIR/bin/tools/RunFunctions

cp -r 0.org 0 # To copy the 0.org folder to 0 folder

runApplication blockMesh

runApplication setFields

runApplication interfoam

Code 9: Allclean script

# Source tutorial clean functions

. $WM_PROJECT_DIR/bin/tools/CleanFunctions

# Remove surface

rm -f constant/triSurface/DTC -scaled.stl.gz > /dev/null 2>&1

rm -rf constant/extendedFeatureEdgeMesh > /dev/null 2>&1

rm -f constant/triSurface/DTC -scaled.eMesh > /dev/null 2>&1

cleanCase

rm -r 0
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